Deletion of Caldicellulosiruptor bescii CelA reveals its crucial role in the deconstruction of lignocellulosic biomass
نویسندگان
چکیده
BACKGROUND Members of the bacterial genus Caldicellulosiruptor are the most thermophilic cellulolytic organisms described to date, and have the ability to grow on lignocellulosic biomass without conventional pretreatment. Different species vary in their abilities to degrade cellulose, and the presence of CelA, a bifunctional glycoside hydrolase that contains a Family 48 and a Family 9 catalytic domain, correlates well with cellulolytic ability in members of this genus. For example, C. hydrothermalis, which does not contain a CelA homolog, or a GH48 Family or GH9 Family glycoside hydrolase, is the least cellulolytic of the Caldicellulosiruptor species so far described. C. bescii, which contains CelA and expresses it constitutively, is among the most cellulolytic. In fact, CelA is the most abundant extracellular protein produced in C. bescii. The enzyme contains two catalytic units, a Family 9A-CBM3c processive endoglucanase and a Family 48 exoglucanase, joined by two Family 3b carbohydrate-binding domains. Although there are two non-reducing end-specific Family 9 and three reducing end-specific Family 48 glycoside hydrolases (producing primarily glucose and cellobiose; and cellobiose and cellotriose, respectively) in C. bescii, CelA is the only protein that combines both enzymatic activities. RESULTS A deletion of the celA gene resulted in a dramatic reduction in the microorganism's ability to grow on crystalline cellulose (Avicel) and diminished growth on lignocellulosic biomass. A comparison of the overall endoglucanase and exoglucanase activities of the mutant compared with the wild-type suggests that the loss of the endoglucanase activity provided by the GH9 family domain is perhaps compensated for by other enzymes produced by the cell. In contrast, it appears that no other enzymes in the C. bescii secretome can compensate for the loss of exoglucanase activity. The change in enzymatic activity in the celA mutant resulted in a 15-fold decrease in sugar release on Avicel compared with the parent and wild-type strains. CONCLUSIONS The exoglucanase activity of the GH48 domain of CelA plays a major role in biomass degradation within the suite of C. bescii biomass-degrading enzymes.
منابع مشابه
Homologous Expression of the Caldicellulosiruptor bescii CelA Reveals that the Extracellular Protein Is Glycosylated
Members of the bacterial genus Caldicellulosiruptor are the most thermophilic cellulolytic microbes described with ability to digest lignocellulosic biomass without conventional pretreatment. The cellulolytic ability of different species varies dramatically and correlates with the presence of the multimodular cellulase CelA, which contains both a glycoside hydrolase family 9 endoglucanase and a...
متن کاملExpression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose
BACKGROUND The Caldicellulosiruptor bescii genome encodes a potent set of carbohydrate-active enzymes (CAZymes), found primarily as multi-domain enzymes that exhibit high cellulolytic and hemicellulolytic activity on and allow utilization of a broad range of substrates, including plant biomass without conventional pretreatment. CelA, the most abundant cellulase in the C. bescii secretome, uniqu...
متن کاملConstruction of a Stable Replicating Shuttle Vector for Caldicellulosiruptor Species: Use for Extending Genetic Methodologies to Other Members of This Genus
The recalcitrance of plant biomass is the most important barrier to its economic conversion by microbes to products of interest. Thermophiles have special advantages for biomass conversion and members of the genus Caldicellulosiruptor are the most thermophilic cellulolytic microbes known. In this study, we report the construction of a replicating shuttle vector for Caldicellulosiruptor species ...
متن کاملMetabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass
BACKGROUND Members of the anaerobic thermophilic bacterial genus Caldicellulosiruptor are emerging candidates for consolidated bioprocessing (CBP) because they are capable of efficiently growing on biomass without conventional pretreatment. C. bescii produces primarily lactate, acetate and hydrogen as fermentation products, and while some Caldicellulosiruptor strains produce small amounts of et...
متن کاملHeterologous expression of family 10 xylanases from Acidothermus cellulolyticus enhances the exoproteome of Caldicellulosiruptor bescii and growth on xylan substrates
BACKGROUND The ability to deconstruct plant biomass without conventional pretreatment has made members of the genus Caldicellulosiruptor the target of investigation for the consolidated processing of lignocellulosic biomass to biofuels and bioproducts. These Gram-positive bacteria are hyperthermophilic anaerobes and the most thermophilic cellulolytic organisms so far described. They use both C5...
متن کامل